Lista e meposhtme eshte nje liste e integraleve te funksioneve hiperbolike. Per nje liste te plote shihni lista e integraleve.
Ne te gjitha formulat konstantja a merret te jete jo-zero , dhe C është konstantja e integrimit.
![{\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f9d9cbcd54f578ac416cd60b4f7f6652ecd3857)
![{\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4caebbe3dfd38756272c4f537239370a08d83748)
![{\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/337555e88add80a6b3c2a301058a25aa9f42d99f)
![{\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca5f33eab62decd4b3602955da2ec0a23e09e9a2)
![{\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b38e2ecfb4e3a4b3c2a980d81f6b47bd2962f8d)
![{\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{an}}\sinh ^{n-1}ax\cosh ax-{\frac {n-1}{n}}\int \sinh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/136058dfa5c8a9e62eea4aeffa87bb176ccc0e7e)
- gjithashtu:
![{\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{a(n+1)}}\sinh ^{n+1}ax\cosh ax-{\frac {n+2}{n+1}}\int \sinh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc8cd20cfe958b17f3c2e1ff5ee54d5608ddc9f2)
![{\displaystyle \int \cosh ^{n}ax\,dx={\frac {1}{an}}\sinh ax\cosh ^{n-1}ax+{\frac {n-1}{n}}\int \cosh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6a43fbd9c7859c9f35fb34907fb0d9cd44c24a4b)
- gjithashtu:
![{\displaystyle \int \cosh ^{n}ax\,dx=-{\frac {1}{a(n+1)}}\sinh ax\cosh ^{n+1}ax-{\frac {n+2}{n+1}}\int \cosh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bfa8ac3c4959559f9d05c1c74aeea45483d72e21)
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d14b674a9b740e8c1fe8b3a534365953d3993dd4)
- gjithashtu:
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8d31337ed2598b6933cb5ea53b9a77c44e139c)
- gjithashtu:
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9abc694d34204ecd7ccd4af1576834fe16bf8387)
- gjithashtu:
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de6be9c20a076cde617d6bf30efa385c7023ee1c)
![{\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {2}{a}}\arctan e^{ax}+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0dff59f32e29e40ac43a4f357101cdcc9792acf)
![{\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3be7ff030bbad58ba9a1aa963138bdf3d9133e59)
![{\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51e6083764652e53f0d17164f7e601ab58f46517)
![{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78070fc6118c1b3785d22992d8b833ce89725039)
- gjithashtu:
![{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7572b1393192e541db41e1955c55e899b2398e0)
- gjithashtu:
![{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a23be9bfbc718da7eb953938ab893daa8606cd5)
![{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac64edb7da52a49884dd2c9521709389acd8b92)
- gjithashtu:
![{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46658b84dd546f7e559b1da9860b81095aa2a261)
- gjithashtu:
![{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b2bc949c723b76c32dfaafb96807c3a41dd75cf)
![{\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ed9225606cd8ddb06324343904e147498176a9d)
![{\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3749ec6c66bfed013d85213304dafb2594cd7e34)
![{\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c884996f45f9b12c1ce02d2de63ecd7136e91906)
![{\displaystyle \int \tanh ax\,dx={\frac {1}{a}}\ln |\cosh ax|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/161461d2c890bdcc86452086bb5901c682cff91a)
![{\displaystyle \int \coth ax\,dx={\frac {1}{a}}\ln |\sinh ax|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7831a6e5d1a0a8bde1a397951ca48ebe3f262abb)
![{\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75d8157ecb5b3f5c0294c2efd7b7026187012cee)
![{\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/394a1ba62b737c1fbe60e10041feeeaf250ed53d)
![{\displaystyle \int \sinh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh bx\cosh ax-b\cosh bx\sinh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a2e4c4c49469a3ff4e052ddb997b9389714ca94b)
![{\displaystyle \int \cosh ax\cosh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\cosh bx-b\sinh bx\cosh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b57f46a3ea41c7b07329d0d0ca893a7d1c32ba30)
![{\displaystyle \int \cosh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\sinh bx-b\cosh ax\cosh bx)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6383ff0f04dc8495e9fda35ba63cb9be55ac37f)
![{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c8c5604773c7623b9e6a14d17b8cb8ae8cfcf1c8)
![{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e3f7dfbb4f90692f6804c58f8ecfc2850712af9)
![{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bad011eb5810859caa69e2144c833e789e03324c)
![{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25b712592f010239548274f2b52653eae3e594c0)